

Mendeleev Communications

Mendeleev Commun., 1995, **5(2)**, 60–61

Stabilisation of an Unusual P_2Se_2 Aggregate by Cyclopentadienyl Chromium Carbonyl Fragments. Synthesis and Crystal Structure of $Cp_4Cr_4(CO)_8(P_2Se_2)$

Lai Yoong Goh,*a Wei Chen,a Richard C. S. Wong,a Zhong-Y. Zhoub and Hung K. Func

^a Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia. Fax: +60 3 756 6343; e-mail: lygoh@kimia.um.my

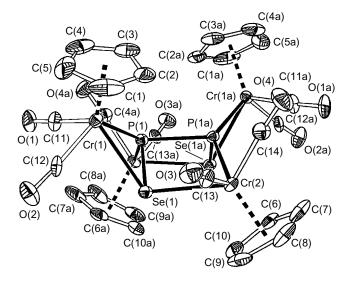
^b Crystal Structure Analysis Laboratory, Chengdu Branch, Academia Sinica, Chengdu, China. Fax: +86 28 664 5404

The reaction of $[CpCr(CO)_3]_2$ with P_4Se_3 at ambient temperature produced $Cp_4Cr_4(CO)_8(P_2Se_2)$, a tetrachromium complex possessing an unusual "open-book" structure.

There is current intense interest in the role of main group heteroatoms and polyatomic aggregates in transition metal complexes and clusters. Our work in this area has involved the reaction of $[CpCr(CO)_3]_2$ 1 with the chalcogens S_8^2 and Se_8 , the pnicogens P_4^{4-5} and As_4^{6} and lately with tetraphosphorus trisulphide P_4S_3 . This paper describes the results of the reaction of 1 with P_4Se_3 .

[CpCr(CO)₃]₂ and P₄Se₃ (1 mol equiv.) in toluene were allowed to react at ambient temperature for 12 days. The product mixture was concentrated to dryness and extracted with THF, leaving behind some P₄Se₃ (27% recovery). Column chromatography of the extracts on silica gel led to the elution of (i) CpCr(CO)₂P₃ as a yellow solution in 2:1 *n*-hexane–toluene, which gave yellow crystals (13.6%), characterised as previously described;[†] (ii) P₄Se₃ as an orange solution in 1:1 *n*-hexane–toluene, which gave brownish orange crystalline solids of P₄Se₃ (5.6% recovery); (iii) Cp₄Cr₄(CO)₈(P₂Se₂) **2** as a reddish brown solution with 2:3 *n*-hexane–toluene, from which were isolated dark brown crystals (33.5%), characterised by analytical and spectroscopic methods;[‡] and (iv) Cp₄Cr₄(CO)₉(P₄Se₃) as a yellowish brown

solution in 1:3 n-hexane—toluene, from which were isolated dark brown crystals (43.8%), characterised by analytical spectroscopic and single crystal X-ray diffraction analyses (not presented here because of its close resemblance to the S analogue⁷). Dark brown thick triangular plates of 2 suitable for a single-crystal X-ray structural analysis[§] were obtained from a solution in toluene—n-hexane after 10 days at -28 °C.


§ Crystal data: Molecular formula = $Cp_4Cr_4(CO)_8(P_2Se_2)$. $M_r =$

912.3, orthorhombic, space group $C2\overline{2}2_1$, a=14.901(6), b=14.889(5), c=13.686(4) Å, V=3036(2) Å, Z=4, $\rho(calc.)=1.996$ Mg m⁻³, F(000) = 1784, $\lambda(\text{MoK}_{\alpha}) = 0.71073 \text{ A}$, $T = 22 \,^{\circ}\text{C}$, crystal dimensions: $0.16 \times 0.14 \times 0.26$ mm, $\mu = 3.946$ mm⁻¹. Siemens P4 diffractometer, ω scan type. Of 2410 reflections measured, 1721 $[F > 4\sigma(F)]$ were used in refinement. The crystal used for unit cell determination and data collection was coated with epoxy glue to prevent decomposition in air. Thirty six strong reflections were used for accurate determination of the unit cell parameters. Raw intensities were processed for Lorentz-polarization effects and decay. Absorption correction did not improve the quality of the data and is omitted. The structure was solved by direct methods of the Siemens SHELXTL/PC programs. All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride on the parent C atoms with fixed U of 0.08 A². Computations were performed using an IBM 486PC. Analytic expressions of atomic scattering factors were employed and anomalous dispersion corrections were incorporated. Final R = 0.044 $(R_{\rm w}=0.051)$ for the correct enantiomer (Flack x parameter = 0.00 in SHELXL93 programs). Full lists of bond lengths, bond angles and atomic coordinates have been deposited at the Cambridge Crystallographic Data Centre (CCDC), see Notice to Authors, Mendeleev Commun., 1995, issue 1.

^c School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia. Fax: +60 4 657 4854; e-mail: hkfun@cs.usm.my

[†] NMR spectral data:⁴ ¹H (100 MHz, C₆D₆, residual C₆H₆): δ(Cp) 3.92. ¹³C (25 MHz, C₆D₆, residual C₆H₆): δ(Cp) 84.91, δ(CO) 233.74. TLC on Merck Kieselgel 60 F₂₅₄ plates *versus* an authentic sample: $R_{\rm f}$ 0.65 with 3:2 *n*-hexane–toluene as eluent.

[‡] Satisfactory elemental analysis. ¹H NMR (270 MHz, C_6D_6 , 25 °C, residual C_6H_6): $\delta(Cp)$ 4.52 and 4.45. ¹³C NMR (26.04 MHz, C_6D_6 , residual C_6H_6): $\delta(Cp)$ 93.10 and 89.91. ³¹P NMR (96.15 MHz, C_6D_6 , H_3PO_4): δ 333.24. IR (toluene): v_{CO}/cm^{-1} 1943vs, 1889s.

The absolute molecular structure of 2, illustrated in Fig. 1, possesses an unusual "open-book" framework with a P–P backbone, joining two CrP₂Se trapezoidal planes separated by a dihedral angle of 119.4°. A two-fold axis of symmetry passes through the mid-point of the P–P backbone. The PSe edges of the trapezoids are each η^2 -bonded to a CpCr(CO)₂ fragment. Thus, each of the Cr atoms assumes a four-legged piano stool configuration. Each of the P atoms is four-coordinate while the Se atoms are each three-coordinate.

The P–P bond distance of 2.237(5) A is very close to those in the P_4Se_3 cage (mean 2.25 A). Nown values of P–P bond lengths average 2.22 A in the P_{10} core of $[CpCr(CO)_2]_5P_{10}^{5}$ and 2.21 A in P_4 vapour. The P–Se distance of 2.250(3) A is very close to that in the intact P_4Se_3 cage (mean 2.24 A). The Cr–P distances [2.340(3) and 2.393(3) A] fall within the range of 2.341–2.494 A observed for other CpCr complexes with phosphorus ligands. The Cr–Se distances [2.566(2) A and 2.575(2) A] are longer than those observed in the $(\mu$ - η^2 -Se₂) complex $Cp_2Cr_2(CO)_4Se_2$ (2.538–2.551 A) or in the cubanes $Cp_4Cr_4Se_2(CO)_2$ (2.317–2.400 A) and $Cp_4Cr_4Se_2O_2$ (2.441–2.462 A).

The structure of 2 indicates that in this reaction the P₄Se₃ cage molecule can be considered to have undergone two P-P and two P-Se bond cleavages (Fig. 2), resulting in the extrusion of a PSeP fragment, with subsequent or concomitant coordination of four CpCr(CO)₂ fragments to each of the atoms of the Se-P-P-Se aggregate. The approximately Z-shaped conformation of this four-atom unit and its manner of bonding to the CpCr fragments is an unusual feature not observed before in reactions of the P_4E_3 (E = S, Se) molecules. In our previous study of P₄S₃, the cage underwent multiple bond cleavages with extensive rearrangement cum coordination of $CpCr(CO)_n$ (n = 2, 3) fragments to yield the Cp₄Cr₄(CO)₉(P₄S₃) complex. The stabilisation of a P₂Se₂ main group element fragment by organotransition metals, as found in 2, is as yet unprecedented. Indeed, these CpCr(CO)₃ radical-initated reactions of P₄E₃ tend to produce tetranuclear complexes with rather novel features and geometries. The present results illustrate the potential role of cage molecules

Fig. 2 Bond cleavage of P₄Se₃.

like P₄Se₃ in the building of transition metal-main group clusters, which are currently of interest in the extensive area of materials science.

Support from the University of Malaya and Malaysian IRPA grant nos. 04-07-04-211 (L.Y.G.) and 123-3417-2201 (H.K.F. and Z.-Y.Z) is gratefully acknowledged.

References

- (a) L. C. Roof and J. W. Kolis, Chem. Rev., 1993, 93, 1037; (b)
 M. DiVaria and P. Stoppioni, Coord. Chem. Rev., 1992, 120, 258; (c)
 O. J. Scherer, Angew. Chem., Int. Ed. Engl., 1990, 29, 1104; (d)
 A.-J. Di Maio and A. L. Rheingold, Chem. Rev., 1990, 90, 169; (e)
 M. Scheer and E. Hermann, Z. Chem., 1990, 30, 41; (f)
 N. C. Norman, Chem. Soc. Rev., 1988, 17, 269; (g)
 K. H. Whitmire, J. Coord. Chem. B, 1988, 17, 95; (h)
 M. DiVaira, P. Stoppioni and M. Peruzzini, Polyhedron, 1987, 6, 351; (i)
 G. Huttner, Pure Appl. Chem., 1986, 58, 585; (j)
 W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1986, 25, 56; (k)
 O. J. Scherer, Angew. Chem., Int. Ed. Engl., 1985, 24, 924; (l)
 I. Haiduc and D. B. Sowerby, in The Chemistry of Inorganic Homo- and Heterocycles, eds. I. Haiduc and D. B. Sowerby, Academic Press, London, 1987, vol. 2, p. 701.
- 2 L. Y. Goh, T. W. Hambley and G. B. Robertson, J. Chem. Soc., Chem. Commun., 1983, 1458; Organometallics, 1987, 6, 1051.
- 3 L. Y. Goh, Chen Wei and E. Sinn, J. Chem. Soc., Chem. Commun., 1985, 462; Organometallics, 1988, 7, 2020.
- 4 L. Y. Goh, R. C. S. Wong, C. K. Chu and T. W. Hambley, J. Chem. Soc., Dalton Trans., 1989, 1951.
- 5 L. Y. Goh, R. C. S. Wong and E. Sinn, J. Chem. Soc., Chem. Commun., 1990, 1484; Organometallics, 1993, 12, 888.
- 6 L. Y. Goh, R. C. S. Wong, T. C. W. Mak and W-H. Yip, Organometallics, 1991, 10, 875.
- L. Y. Goh, W. Chen and R. C. S. Wong, Angew. Chem., Int. Ed. Engl., 1993, 32, 1728.
- 8 International Tables for X-ray Crystallography, vol. IV, Kynoch Press, Birmingham, Tables 2.2B, Band 2.3.1 (now distributed by Kluwer, Dordrecht).
- 9 E. Keulen and A. Vos, Acta Crystallogr., 1959, 12, 323.
- 10 L. R. Maxwell, S. B. Hendricks and V. M. Mosley, J. Chem. Phys., 1935, 3, 699.
- 11 L. Y. Goh and T. C. W. Mak, J. Organomet. Chem., 1989, 363, 77

Received: Cambridge, 13th December 1994 Moscow, 9th January 1995; Com. 4/07597H